
Eur. Phys. J. C 54, 219–229 (2008) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-008-0524-7

Regular Article – Theoretical Physics

Soft end-point and mass corrections to the η′g∗g∗ vertex
function
S.S. Agaev1,a, M.A. Gomshi Nobary2,b

1 Institute for Physical Problems, Baku State University, Z. Khalilov st. 23, 1148 Baku, Azerbaijan
2 Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran

Received: 25 June 2007 / Revised version: 5 November 2007 /
Published online: 1 February 2008 − © Springer-Verlag / Società Italiana di Fisica 2008

Abstract. Power-suppressed corrections arising from end-point integration regions to the space-like ver-
tex function of the massive η′-meson virtual gluon transition η′− g∗g∗ are computed. Calculations are
performed within the standard hard-scattering approach (HSA) and the running coupling method sup-
plemented by the infrared renormalon calculus. Contributions to the vertex function from the quark
and gluon contents of the η′-meson are taken into account and the Borel resummed expressions for
Fη′g∗g∗(Q

2, ω, η), as well as for Fη′gg∗ (Q
2, ω =±1, η) and Fη′g∗g∗ (Q

2, ω = 0, η) are obtained. It is demon-

strated that the power-suppressed corrections ∼ (Λ2/Q2)n, in the explored range of the total gluon vir-
tuality 1 ≤Q2 ≤ 25 GeV2, considerably enhance the vertex function relative to the results found in the
framework of the standard HSA with a fixed coupling. Modifications generated by the η′-meson mass effects
are discussed.

PACS. 12.38.Bx; 14.40.Aq; 11.10.Hi

1 Introduction

Recently interest in theoretical investigations of the glu-
onic structure of the η and η′-mesons has risen due
to the high precision CLEO results on the electromag-
netic ηγ, η′γ transition form factors (FFs) [1], as well
as because of the observed large branching ratios for
the exclusive B→K+η′ and semi-inclusive B→ η′+Xs
decays [2, 3].
The data on FF of the η′γ transition were mainly

used for extracting constraints on the quark component of
the η′-meson distribution amplitude (DA) [4–6]. In these
investigations various theoretical schemes and methods
were employed. An important conclusion drawn from these
studies is that the quark component of the η′-meson DA
should be close to its asymptotic form and that the admix-
ture of the first non-asymptotic term should be within the
range ofBq2(1 GeV

2)� 0.05–0.15,Bq2 being the first Gegen-
bauer coefficient.
An effect of the gluon component of the η′-meson DA

on the η′γ transition was analyzed in [7, 8], where relevant
constraints on the input parameters Bq2 and B

g
2 were ex-

tracted: it was shown that their allowed values are strongly
correlated. Useful bounds on the Gegenbauer coefficients
Bq2 and B

g
2 were obtained also from investigation of the

semi-inclusive decay Υ (1S)→ η′+X [9].
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The two-gluon valence Fock component of the η′-meson
can directly contribute to the η′γ transition FF only at
the next-to-leading order due to quark box diagrams and
also affect the leading order result through evolution of
the quark component of the η′-meson DA. Hence, an effect
of the η′-meson gluon component on the η′γ transition is
mild. Contrary, the contribution of the gluon content of the
η′-meson to the two-body non-leptonic exclusive and semi-
inclusive decay ratios of the B-meson may be sizeable. In-
deed, in order to explain the observed large branching ratio
Br(B→ η′+Xs), in [10] a mechanism that employs the
two-gluon content of the η′-meson was suggested. In ac-
cordance with this approach the dominant fraction of the
B→ η′+Xs decay rate appears as the result of the tran-
sition g∗→ gη′ of a virtual gluon from the standard model
penguin diagram b→ sg∗. In [10] the g∗gη′ vertex function

(VF) was approximated by the constant H
(
q2, 0,m2η′

)
�

H
(
0, 0,m2η′

)
� 1.8GeV−1, the latter being extracted from

the analysis of the J/ψ→ η′γ decay. Further investigations
demonstrated that the effects of the QCD running coup-
ling αs(q

2) [11], as well as the momentum dependence of
the form factor H(q2, 0,m2η′), properly taken into account,
considerably reduce the contribution to Br(B→ η′+Xs)
of the mechanism under consideration [12]. To eliminate
the discrepancy between theoretical predictions and the
experimental data in [13] a gluon fusion mechanism was
proposed. In accordance with the latter, the η′-meson is
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produced by the fusion of a gluon from the QCD pen-
guin diagram b→ sg∗ with another one emitted by the
light quark inside the B-meson. In this mechanism, the
vertex function Fη′g∗g∗(q1

2, q22,m
2
η′) appears owing to the

g∗g∗→ η′ transition. Similar ideas form a basis for the
computation of the branching ratios of various two-body
non-leptonic exclusive decay modes and transition FFs of
the B meson [14–20].
Hence, the η′-meson virtual (on-shell) gluon transi-

tion VF, Fη′g∗g∗(q
2
1, q

2
2,m

2
η′), is the central ingredient of

the relevant analysis performed within perturbative QCD
(pQCD) and it deserves further investigations. This VF
was computed in numerous works [8, 21–23]. The space-
like massless η′g∗g∗ vertex within the standard hard-
scattering approach (HSA) was considered in [8], where
a correct analysis of the normalization of the gluon com-
ponent of the η′-meson DA and that of the gluon pro-
jector onto a pseudo-scalar meson state was performed.
Power-suppressed corrections, arising from the end-point
integration regions x→ 0, 1, to the massless space-like
η′g∗g∗ VF were found in [22]. In this work the standard
HSA and the running coupling (RC) method together
with the infrared (IR) renormalon calculus were applied.
The η′-meson mass corrections to the η′g∗g∗ space- and
time-like vertex in the standard HSA were calculated
in [23].
In the present work, we extend the results obtained

in [22] by taking into account the η′-meson mass effects,
which may be considerable. The RC method [24, 25] en-
ables us to estimate power corrections coming from the
end-point x→ 0, 1 regions in the integrals determining the
amplitude of the η′g∗g∗ transition. Indeed, in the frame-
work of the standard HSA [26–28], in order to calculate
the amplitude of the process, one has to perform integra-
tions over the longitudinal momentum fractions of the con-
stituents of the meson. If one chooses the renormalization
scale µ2R in the hard-scattering amplitude TH of the corres-
ponding partonic subprocess in such a way as to minimize
higher-order corrections and allows the QCD coupling con-
stant αs

(
µ2R
)
to run, then one encounters divergences aris-

ing from the end-point x→ 0, 1 regions. The reason is that
the scale µ2R, as a rule, is equal to the momentum squared
of the hard virtual partons carrying the strong interac-
tions in the subprocess’ Feynman diagrams and depends,
in general, on x (or x ≡ 1−x). Within the RC method
this problem is resolved by applying the renormalization
group equation and the IR renormalon calculus (for a re-
view see, [29, 30]). It turns out that such a treatment allows
us to evaluate power corrections to the physical quantity
under consideration [6, 7, 22, 31–33].
This paper is structured as follows. In Sect. 2 we present

the necessary information on the quark–gluon structure
of the η′-meson, its DAs and the hard-scattering ampli-
tudes of the relevant subprocesses. Section 3 is devoted to
a calculation of the quark component of the η′g∗g∗ vertex
function. The contribution to the VF of the gluon content
of the η′-meson is computed in Sect. 4. Section 5 contains
our numerical results and their analysis. In Sect. 6 we make
our concluding remarks.

2 Quark and gluon content of the η�-meson
and the η�g�g� vertex

The Fock state decomposition of the pseudoscalar P =
η, η′-mesons can be written in the following form:

|P 〉= |Pa〉+ |Pb〉+ |Pc〉+ |Pg〉 ,

where |Pa〉 and |Pb〉 denote the P -meson light quarks,
and |Pc〉 and |Pg〉 its charm and gluon components,
respectively.
The light-quark content of the P -meson can be de-

scribed either in the SUf (3) octet–singlet or in the quark-
flavor basis. In this paper we choose to work in the quark-
flavor basis

|ηq〉=
Ψq√
2

∣∣uu+dd〉 , |ηs〉= Ψs |s〉 . (1)

Here Ψi denote wave functions of the corresponding parton
states.
We neglect the charm component of the η′-meson, be-

cause in accordance with existing estimations [34–36], it
is too small to affect considerably the B-meson exclusive
decays.
The pure light-quark sector of the η–η′ system without

charm and gluon admixtures can be treated as superposi-
tions of the basic states (1),

|η〉= cosφp |ηq〉− sinφp |ηs〉 ,

|η′〉= sinφp |ηq〉+cosφp |ηs〉 . (2)

One of the advantages of the quark-flavor basis is that in
this basis the decay constants f

q(s)
P follow with great accu-

racy the pattern of the state mixing [37]

fqη = fq cosφp, f
s
η =−fs sinφp ,

fq
η′
= fq sinφp, f

s
η′ = fs cosφp , (3)

where the decay constants fq and fs and the mixing angle
φp have the values

fq = (1.07±0.02)fπ, fs = (1.34±0.06)fπ ,

φp = 39.3
◦±1.0◦ , (4)

with fπ = 0.131GeV being the pion weak decay constant.
The singlet part of the η′-meson DA, which is only rel-

evant to our present investigations, depends on both the
quark φq(x, µ2) and gluon φg(x, µ2) components of the
η′-meson DA. These functions satisfy the symmetry and
antisymmetry conditions under the exchange x↔ x,

φq(x, µ2) = φq(x, µ2), φg(x, µ2) =−φg(x, µ2) , (5)

and they are given by the expressions

φq
(
x, µ2F

)
= 6Cxx

⎧⎪⎨
⎪⎩
1+

∞∑
n=2,4,...

⎡
⎢⎣Bqn

(
αs
(
µ20
)

αs (µ2F)

) γn+
β0

+ρgnB
g
n

(
αs
(
µ20
)

αs (µ2F)

) γn−
β0

⎤
⎥⎦C3/2n (x−x)

⎫
⎪⎬
⎪⎭
(6)
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and

φg
(
x, µ2F

)
= Cxx

∞∑
n=2,4..

⎡
⎢⎣ρqnBqn

(
αs
(
µ20
)

αs (µ2F)

)γn+
β0

+Bgn

(
αs
(
µ20
)

αs (µ2F)

) γn−
β0

⎤
⎥⎦C5/2n−1(x−x) , (7)

where the constant C is defined as

C =
√
2fq sinφp+fs cosφp .

In (6) and (7), C
3/2
n (z) and C

5/2
n−1(z) are Gegenbauer

polynomials, µ2F and µ
2
0 are the factorization and normal-

ization scales, respectively. The values of the input param-
etersBqn andB

g
n have to be fixed at the normalization scale

µ20 = 1GeV
2: they determine the shape of the DAs. In the

above expressions, αs(µ
2) is the QCD coupling constant in

the two-loop approximation given by

αs(µ
2) =

4π

β0 ln(µ2/Λ2)

[
1−
2β1
β20

ln ln(µ2/Λ2)

ln(µ2/Λ2)

]
, (8)

with β0 and β1 being the one- and two-loop coefficients of
the QCD beta function

β0 = 11−
2

3
nf , β1 = 51−

19

3
nf . (9)

Here, Λ is the QCD scale parameter and nf is number of
active quark flavors.
In this work, we shall use the η′-meson DA that con-

tains only the first non-asymptotic terms. Stated differ-
ently, we suppose that in (6) and (7) Bq2 �= 0, B

g
2 �= 0 and

Bqn =B
g
n = 0 for all n≥ 4. Taking into account the expres-

sions for the required Gegenbauer polynomials as well as
the values of the relevant parameters, we can recast the
η′-meson quark and gluon DAs into the following simple
forms [22]:

φq
(
x, µ2F

)
= 6Cxx

[
1+A

(
µ2F
)
−5A

(
µ2F
)
xx
]
,

φg
(
x, µ2F

)
= Cxx(x−x)B

(
µ2F
)
. (10)

For nf = 4 the functions A(µ
2
F) and B(µ

2
F) are defined by

A
(
µ2F
)
= 6Bq2

(
αs
(
µ2F
)

αs (µ20)

)48
75

−
Bg2
17

(
αs
(
µ2F
)

αs (µ20)

)107
75

,

B
(
µ2F
)
= 19Bq2

(
αs
(
µ2F
)

αs (µ20)

) 48
75

+5Bg2

(
αs
(
µ2F
)

αs (µ20)

)107
75

.

(11)

The η′-meson quark and gluon DAs for nf = 3 can be found
in [22].
The η′-meson virtual gluon transition vertex function

Fη′g∗g∗(Q
2, ω, η) is the sum of the quark and gluon compo-

nents defined in terms of the invariant amplitudes for the

process

η′(P )→ g∗(q1)+ g
∗(q2) ,

in the following way:

Mq(g) =−iF q(g)
η′g∗g∗

(Q2, ω, η)δabε
µνρσεa∗µ ε

b∗
ν q1ρq2σ . (12)

Here, εaµ, ε
b
ν and q1, q2 are the polarization vectors and

four-momenta of the two gluons, respectively. Because
we study only the space-like VF, q21 and q

2
2 obey the

constraints Q21 = −q
2
1 ≥ 0 and Q

2
2 = −q

2
2 ≥ 0. The VF,

Fη′g∗g∗(Q
2, ω, η), depends on the total gluon virtualityQ2,

the asymmetry parameter ω, and η′ -meson scaled mass η

Q2 =Q21+Q
2
2, ω =

Q21−Q
2
2

Q2
, η =

m2η′

Q2
. (13)

The parameter ω varies in the region −1 ≤ ω ≤ 1. The
values ω =±1 corresponds to the η′-meson on-shell gluon
transition and ω = 0 to the situation when the gluons have
equal virtualities.
In accordance with the factorization theorems of pQCD,

at high momentum transfer the components of the VF
F
q(g)
η′g∗g∗

(Q2, ω, η) can be calculated by means of the
formulas

F q
η′g∗g∗

(Q2, ω, η) =

∫ 1
0

[
T q1
(
x,Q2, ω, η, µ2F

)

+T q2
(
x,Q2, ω, η, µ2F

)]
φq
(
x, µ2F

)
dx ,

(14)

and

F g
η′g∗g∗

(Q2, ω, η) =

∫ 1
0

[
T g1
(
x,Q2, ω, η, µ2F

)

−T g2
(
x,Q2, ω, η, µ2F

)]
φg
(
x, µ2F

)
dx .

(15)

The sum

T qH
(
x,Q2, ω, η, µ2F

)
= T q1

(
x,Q2, ω, η, µ2F

)

+T q2
(
x,Q2, ω, η, µ2F

)

and the difference

T gH
(
x,Q2, ω, η, µ2F

)
= T g1

(
x,Q2, ω, η, µ2F

)

−T g2
(
x,Q2, ω, η, µ2F

)

are the hard-scattering amplitudes of the subprocesses q+
q→ g∗+ g∗ and g+ g→ g∗+ g∗, respectively. The Feyn-
man diagrams contributing at the leading order to these
subprocesses are depicted in Figs. 1 and 2.
At the leading order of pQCD, the hard-scattering am-

plitudes do not depend on the factorization scale µ2F but
depend implicitly on the renormalization scale µ2R through
αs
(
µ2R
)
. As the scales µ2R and µ

2
F are independent of each

other and can be chosen separately, we adopt in this work
the standard choice for the factorization scale µ2F = Q

2,
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Fig. 1. Leading-order Feynman diagrams contributing to the
hard-scattering subprocess q+ q→ g∗+ g∗

Fig. 2. Feynman diagrams contributing at leading order to the
subprocess g+ g→ g∗+ g∗

and we omit in what follows the dependence of the hard-
scattering amplitudes on µ2F. Thus, we have

T q1
(
x,Q2, ω, η, µ2R

)
=−

2π

3Q2
αs
(
µ2R
)

ωλ

×
ω(1+λ)−η(x−x)

x(1+ω)+x(1−ω)+2xxη
(16)

and

T g1
(
x,Q2, ω, η, µ2R

)
=
παs
(
µ2R
)

Q2nf

×
x(1+ω)+x(1−ω)+2(1+xx)η

ωλ [x(1+ω)+x(1−ω)+2xxη]
,

(17)

where λ= (1+2η/ω2+η2/ω2)1/2 [23]. The remaining two
functions can be obtained from (16) and (17) by means of
the replacement x↔ x.
In the standard HSA one sets the renormalization scale

to be µ2R =Q
2, fixing αs

(
µ2R
)
with respect to x, and sim-

plifying the calculation of the VF considerably. In this ap-
proach the functions (16) and (17) possess the symmetry
features

T q1(2)(x,Q
2,−ω, η) = T q2(1)(x,Q

2, ω, η) ,

T g1(2)(x,Q
2,−ω, η) =−T g2(1)(x,Q

2, ω, η) . (18)

Using these features as well as (5) and the symmetry prop-

erties of T
q(g)
1(2) under x↔ x exchange, one can prove that

F
q(g)
η′g∗g∗

(Q2, ω, η) = F
q(g)
η′g∗g∗

(Q2,−ω, η) . (19)

The last equality is a manifestation of the Bose symme-
try of the process under discussion under vector particles–
gluons exchange.
Within the RC method the renormalization scale µ2R

is chosen equal, as a rule, to the momentum squared |q2|
of the virtual partons in the corresponding Feynman dia-
grams. For the massless η′-meson on-shell gluon transition
the scale µ2R is exactly equal to

µ2R =Q
2x . (20)

Then upon x↔ x exchange, the argument of αs
(
µ2R
)
in the

functions T
q(g)
2 becomes equal to µ2R =Q

2x. In the general
case, the absolute value of the square of the four-momenta
q2 of the virtual partons depends on the total gluon virtu-
ality Q2, the asymmetry parameter ω and the scaled mass
term η. However, to avoid problems related to the appear-
ance of the parameters Q2, ω and η in the argument of αs,
we shall use the renormalization scale (20). Such a choice
is justified from the physics point of view as well, because
namely the part ∼Q2x of the renormalization scale leads
to the power corrections ∼ (Λ2/Q2)n, n = 1, 2, . . . to the
VF Fη′g∗g∗(Q

2, ω, η), which we are going to compute.
In the present paper we adopt the symmetrized RC

method, where αs(Q
2x) and αs(Q

2x) are replaced by

αs(Q
2x)+αs(Q

2x)

2
.

After this modification all symmetry properties of the
hard-scattering amplitudes and the vertex function remain
valid within the RC method as well. The symmetrized RC
method was successfully employed in the investigation of
various exclusive processes [22, 32, 33].

3 Quark component of the vertex function
F
q
η�g�g�(Q

2, ω, η)

The expression for the quark component of the vertex func-
tion F q

η′g∗g∗
(Q2, ω, η) can be computed only after resolv-

ing the problems of the soft end-point regions x→ 0, 1.
In fact, having inserted the explicit expressions of the
hard-scattering amplitude and the quark component of the
η′-meson DA into (14), one encounters divergences arising
from the singularities of the coupling constants αs(Q

2x)
and αs(Q

2x) in the limits x→ 0, 1. The RC method pro-
vides the required prescription to cure these divergences.
To this end, we express the running coupling αs(Q

2x)
in terms of αs(Q

2) and, as a result, obtain integrals that
can be regularized and calculated using the approach de-
scribed in [24, 25]. Then the quark component of the VF
is written as a perturbative series in αs(Q

2) with factori-
ally growing coefficients. The resummation of such a series
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is performed by means of a Borel transformation. Namely,
one has to determine the Borel transform of the corres-
ponding series and in order to get the resummed expression
for the vertex function one has to invert the Borel trans-
form. The Borel transform of the series with factorially
growing coefficients contains infrared renormalon poles lo-
cated at the positive axis of the Borel plane; therefore the
inverse Borel transformation suffers from pole divergences.
In other words, the Borel technique transforms the end-
point divergences into the IR renormalon pole divergences
of the inverse transformation. Then, the resummed expres-
sion can be extracted by computing the relevant integrals
in the sense of the Cauchy principal value [29, 30].
A useful way to bypass these intermediate operations

and directly obtain the Borel resummed expressions is to
introduce the following formula for αs(Q

2x) [6]:

αs(Q
2x) =

4π

β0

∫ ∞
0

du exp(−ut)R(u, t)x−u , (21)

where the function R(u, t) is defined as

R(u, t) = 1−
2β1
β20
u(1−γ− ln t− lnu) .

In the above, γ � 0.577216 is the Euler constant and t=
ln(Q2/Λ2).
Calculations of the quark component of the VF lead to

the following result:

F q
η′g∗g∗

(Q2, ω, η) = F q1 (Q
2, ω, η)+F q2 (Q

2, ω, η) , (22)

where

F qi (Q
2, ω, η)

=−
16π2C[1+A(Q2)]

Q2β0
Ki(ω, η)

×

∫ ∞
0

due−utR(u, t)B(2−u, 2)

× [2F1 (1, 2; 4−u; ri)+ 2F1 (1, 2−u; 4−u; ri)]

+
80π2CA(Q2)

Q2β0
Ki(ω, η)

×

∫ ∞
0

due−utR(u, t)B(3−u, 3)

× [2F1 (1, 3; 6−u; ri)+ 2F1 (1, 3−u; 6−u; ri)] .

(23)

Here

K1(ω, η) =
η

ωλ(ωλ−ω−η)
, r1 =

2η

ω+η−ωλ
(24)

and

K2(ω, η) =
η

ωλ(ωλ−ω+η)
, r2 =

2η

η−ω+ωλ
. (25)

Equation (22) with the functions F q1 and F
q
2 is the Borel re-

summed expression for the quark component of the η′g∗g∗

vertex function and contains power-suppressed corrections
coming from the soft end-point regions [22].
Since under the replacement ω ↔ −ω the relations

K1↔K2 and r1↔ r2 hold, we get

F q
η′g∗g∗

(Q2,−ω, η) = F q
η′g∗g∗

(Q2, ω, η) .

The components F q1 (Q
2, ω, η) and F q2 (Q

2, ω, η) of
F q
η′g∗g∗

(Q2, ω, η) can be obtained from each other utilizing
the transformation

2F1(a, b; c; z) = (1− z)
−a
2F1

(
a, c− b; c;

z

z−1

)
. (26)

The argument r1 of the hypergeometric functions in
F q1 (Q

2, ω, η) in the region ω ∈ (−1, 0) obeys the constraint
r1 < 1, whereas r2 < 1 in the domain ω ∈ [0, 1). In order to
reveal the IR renormalon structure of the Borel resummed
vertex function as well as to perform numerical computa-
tions, we have to expand the hypergeometric functions over
r1 or r2. We choose to work in the region ω ∈ [0, 1), and we
therefore employ the expression

F q
η′g∗g∗

(Q2, ω, η) = 2F q2 (Q
2, ω, η) . (27)

Due to the symmetry of F q
η′g∗g∗

(Q2, ω, η) under ω↔−ω,
the pole structure of the vertex function and numerical re-
sults in the region ω ∈ (−1, 0) are the same.
For the η′-meson on-shell gluon transition, we get

F q
η′gg∗

(Q2, ω =±1, η)

=−
16π2C[1+A(Q2)]

Q2β0

1

1+η

∫ ∞
0

due−utR(u, t)

× [B(1, 2−u)+B(2, 1−u)]+
80π2CA(Q2)

β0

1

1+η

×

∫ ∞
0

due−utR(u, t) [B(3, 2−u)+B(2, 3−u)] .

(28)

In the case of gluons with equal virtualities, ω = 0, the
F q
η′g∗g∗

(Q2, ω = 0, η) can be obtained from (27) upon the

substitutionsK2→K0 and r2→ r0, where

K0(η) =
1

η
√
1+2/η(1+

√
1+2/η)

,

r0 =
2

1+
√
1+2/η

. (29)

As we have mentioned earlier, the massless η′-meson
virtual gluon transition vertex function was computed
in [22]. The predictions of this work for F q

η′g∗g∗
(Q2, ω, η)

should lead to the results of [22] in the limit of η→ 0. To
regain these results, it is necessary to expand the relevant
functions over η� 1, and only after that take the limit
η→ 0. Then, in the general case (ω �= 0,±1)

K2(ω, η→ 0) =
1

1+ω
, r2 =

2ω

1+ω
.
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Using the last expressions, it is not difficult to check that
(27) coincides with (4.4) of [22]. By setting η = 0, from (28)
one can easily recover the expression for the massless η′-
meson on-shell gluon transition VF derived in (4.5) of [22].
The important question to be clarified here is whether

one can use the results obtained within the RC method in
the limit Q2→∞ in order to regain the asymptotic form
of the VF. Indeed, regardless of the method used, in the
limit Q2→∞, the VF must reach its asymptotic form, be-
cause power-suppressed corrections vanish in the asymp-
totic limit. In the limitQ2→∞, the gluon component of the
η′-meson DA vanishes, φg(x,Q2)→ 0, whereas the quark
component φq(x,Q2) evolves to its asymptotic form

φq(x,Q2)→ 6Cxx .

Therefore, the results that we obtain here not only describe
the asymptotic limit of the quark component of the VF,
but the asymptotic limit of the full VF itself.
From the whole analysis performed in [22] it follows

that in the asymptotic limit the substitution

4π

β0

∫ ∞
0

due−utR(u, t)B(n,m−u)

×2F1 (1,m−u;m+n−u; r)

→ αs(Q
2)B(n,m)2F1 (1,m;m+n; r)

has to be applied.
Having used this prescription, we obtain

F q
η′g∗g∗

(Q2, ω, η)−→−
8πCαs(Q

2)

3Q2
Ki(ω, η)2F1(1, 2; 4; ri) .

(30)

Equation (30) with the quantities labeled i= 1, 2, in gen-
eral, should be employed in the relevant regions of the
asymmetry parameter, i.e. in the regions ω ∈ (−1, 0) and
ω ∈ (0, 1), respectively. But, because the hypergeometric
function 2F1(1, 2, 4; z) is expressible in terms of the elemen-
tary ones, one can use (30) with both i= 1 and i= 2 in
the whole region ω ∈ (−1, 1), excluding the point ω = 0. At
ω = 1 (ω =−1) (30) with i= 2 (i= 1) can be applied. Our
formula for the asymptotic limit of the quark component
of the VF numerically is identical to (60) of [23] (after set-
ting there

√
nffη′ → C and A2(Q

2) = 0 and evolving the
argument of αs to Q

2).
The IR renormalon structure of the expressions (22)

and (28) does not differ from that of the corresponding
massless η′-meson gluon transition FFs described in rather
detailed form in [22], to which we refer interested readers.

4 The gluon component of the vertex
function

We compute the gluon component of the VF,
F g
η′g∗g∗

(Q2, ω, η), employing the formula

F g
η′g∗g∗

(Q2, ω, η) = 2

∫ 1
0

T g1 (x,Q
2, ω, η)φg(x,Q2)dx ,

which leads to the following result:

F g
η′g∗g∗

(Q2, ω, η) = F ga (Q
2, ω, η)+F gb (Q

2, ω, η) . (31)

In (31) the a and b components are given by the expressions

F ga (Q
2, ω, η)

=
4π2CB(Q2)

Q2β0nf

η

(ωλ)2(ω+η+ωλ)

×

∫ ∞
0

due−utR(u, t) {(1+ω) [B(4−u, 2)

× 2F1(1, 2; 6−u; r)+B(4, 2−u)2F1 (1, 2−u; 6−u; r)]

− (1−ω) [B(4, 2−u)2F1 (1, 4; 6−u; r)

+ B(4−u, 2)2F1 (1, 4−u; 6−u; r)]

−2ωB(3, 3−u) [2F1 (1, 3−u; 6−u; r)

+ 2F1 (1, 3; 6−u; r)]

+2η [B(2, 3−u) (2F1 (1, 2; 5−u; r)

− 2F1 (1, 3−u; 5−u; r))+B(3, 2−u)

× (2F1 (1, 2−u; 5−u; r)− 2F1 (1, 3; 5−u; r))

+B(4−u, 3) (2F1 (1, 3; 7−u; r)

− 2F1 (1, 4−u; 7−u; r))+B(4, 3−u)

× (2F1 (1, 3−u; 7−u; r)− 2F1 (1, 4; 7−u; r))]} , (32)

where

r =
2η

ω+η+ωλ

and

F gb (Q
2, ω, η)

=
4π2CB(Q2)

Q2β0nf

η

(ωλ)2(η−ω+ωλ)

×

∫ ∞
0

due−utR(u, t) {(1+ω) [B(4−u, 2)×

× 2F1 (1, 4−u; 6−u; r)+B(4, 2−u)2F1 (1, 4; 6−u; r)]

− (1−ω) [B(4, 2−u)2F1 (1, 2−u; 6−u; r)

+ B(4−u, 2)2F1 (1, 2; 6−u; r)]

−2ωB(3, 3−u) [2F1 (1, 3−u; 6−u; r)

+ 2F1 (1, 3; 6−u; r)]+2η [B(2, 3−u)

× (2F1 (1, 3−u; 5−u; r)− 2F1 (1, 2; 5−u; r))

+B(3, 2−u) (2F1 (1, 3; 5−u; r)

− 2F1 (1, 2−u; 5−u; r))+B(4−u, 3)

× (2F1 (1, 4−u; 7−u; r)− 2F1 (1, 3; 7−u; r))

+B(4, 3−u) (2F1 (1, 4; 7−u; r)

− 2F1 (1, 3−u; 7−u; r))]} , (33)

with r ≡ r2.
It is worth noting that F ga (Q

2, ω, η) has been obtained
from the original result after the transformation (26). In
the region ω ∈ [0, 1) both r and r < 1, where (32) and (33)
can be used for expansion and numerical calculations. We
have checked that

F g
η′g∗g∗

(Q2,−ω, η) = F g
η′g∗g∗

(Q2, ω, η) ,
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which becomes evident if we represent the gluon compon-
ent of the VF in the form

F g
η′g∗g∗

(Q2, ω, η) =

∫ 1
0

T g1 (x,Q
2, ω, η)φg(x,Q2)dx

−

∫ 1
0

T g2 (x,Q
2, ω, η)φg(x,Q2)dx .

But expressions obtained using T g2 (x,Q
2, ω, η) are as

lengthy as the ones presented in (32) and (33); therefore,
we refrain from writing them down here.
In the case of the η′-meson on-shell gluon transition,

the VF can be found after changing the factors and argu-
ments of the hypergeometric functions in (32) and (33), i.e.
in F ga (Q

2, ω, η)

η

(ωλ)2(ω+η+ωλ)
→

η

2(1+η)3
, r→

η

1+η
,

and in F gb (Q
2, ω, η)

η

(ωλ)2(η−ω+ωλ)
→

1

2(1+η)2
, r→ 1 .

The gluon component of the VF is identically equal to
zero for equal gluon virtualities (ω = 0). This is the im-
portant qualitative modification induced by the η′-meson
mass term kept in the hard-scattering amplitudes. Let us
emphasize that F gη′g∗g∗(Q

2, ω = 0, η) ≡ 0 within both the
standard HSA and the RC method.
In the limit η→ 0 our results reproduce the expression

for the gluon component of the massless η′-meson virtual
gluon transition VF from (4.22) of [22]. In fact, acting as in
the case of the quark component of VF, we can show that
the factor in F ga (Q

2, ω, η) vanishes,

η

(ωλ)2(ω+η+ωλ)
→ 0 ,

and for F gb (Q
2, ω, η) we get

η

(ωλ)2(η−ω+ωλ)
→

1

ω(1+ω)
, r→

2ω

1+ω
.

Then it is easy to demonstrate that the function
F gb (Q

2, ω, η) in the limit η→ 0 leads to F g
η′g∗g∗

(Q2, ω).
The infrared renormalon structure of the terms in (32)

and (33) ∼ (1+ω), (1−ω), 2ω are the same as in the
case of the massless η′-meson virtual gluon transition VF.
The terms∼ 2η are new; nevertheless, their IR renormalon
structures can be clarified using the procedures described
in [22].

5 Numerical analysis

In order to start numerical computations, we need to fix
the values of some constants and parameters. In our calcu-
lations the η′-meson mass is set equal to mη′ = 0.958GeV.
The value of the QCD scale parameter for nf = 4 is Λ=
0.3 GeV.

To proceed with the computation of the η′-meson gluon
vertex function and explore the role played by the η′-meson
gluon content and its mass in this process, we have to de-
fine also the allowed values of the input parametersBq2 and
Bg2 at the normalization scale µ

2
0 = 1GeV

2. In the present
paper we use the η′-meson asymptotic DA or select values
of the parameters Bq2 and B

g
2 that obey the constraints

Bq2 = 0.1, B
g
2 ∈ [−2, 14] . (34)

The quark component of the η′-meson virtual gluon
transition VF for different values of the asymmetry param-
eter is shown in Fig. 3a. The chosen values of the input
parameters correspond to the η′-meson asymptotic DA.
Since, in the case of the asymptotic DA, the gluon com-
ponent of the VF vanishes, in this figure we, actually, have
curves for the full VF. In the same figure predictions ob-
tained within the standardHSA are also depicted. One sees
that in the domain 1≤Q2 ≤ 25GeV2 the standard pQCD
results get enhanced by approximately a factor of two due
to power corrections. A similar conclusion is valid also for
the gluon component of the VF for Q2 ≥ 4 GeV2 (Fig. 3b)
as well.
Even from these first results it is evident that soft

end-point corrections lead, approximately, to the same en-

Fig. 3. The quark (a) and gluon (b) components of the scaled
VF Q2Fη′g∗g∗(Q

2, ω, η) as functions of Q2. The solid curves
are obtained using the RC method, whereas the dashed lines
are calculated within the standard HSA. In b the correspon-
dence between the curves and input parameter Bg2 is B

g
2 = 8 for

the curves 1 and B
g
2 = 4 for the curves 2
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hancement of the standard predictions, as in the case of the
massless η′-meson virtual gluon transition [22]. Therefore,
it is interesting to find modifications in the behavior of the
VF induced by the η′-meson mass effects.
In Fig. 4, the VFs computed within the RC method

by taking into account and neglecting the η′-meson mass
term, are demonstrated. The differences in behavior of the
quark component (Fig. 4a) are considerable. Indeed, mass
effects suppress the absolute value of the quark component
and, at the same time, change its shape in the pQCD ap-
plicable region of Q2. The gluon component, as a function
of the total gluon virtualityQ2, is not affected dramatically
by the η′-meson mass effects (Fig. 4b).
But the η′-meson mass term changes drastically the

behavior of the gluon component of the VF as a func-
tion of the asymmetry parameter. As a function of ω, the
gluon component is plotted in Fig. 5b. It turns out that
F g
η′g∗g∗

(Q2, ω, η) vanishes atω = 0 in the frameworkof both

the standard HSA (the dashed lines) and the RC method
(the solid lines). For small ω the end-point effects are also
mild. Therefore, it is legitimate to conclude that in the
region |ω| < 0.2, F g

η′g∗g∗
(Q2, ω, η) feels neither end-point

nor mass effects. The dependence of the quark component
F q
η′g∗g∗

(Q2, ω, η) on ω is plotted in panel (a) of the same fig-

Fig. 4. The quark (a) and gluon (b) components of the VF
versus Q2. All curves are obtained in the context of the RC
method. The solid lines are calculated by taking into account
the η′-meson mass effects: in computations of the dashed lines
the η′-meson mass term is neglected. In b the correspondence
between the curves and parameter B

g
2 is the same as in Fig. 3

Fig. 5. The quark (a) and gluon (b) components of the VF at
fixedBq2 andQ

2 versus ω. In a all curves are obtained in the con-
text of the RC method. The correspondence between them and
the parameter Bg2 is: B

g
2 = 0 for the solid curve; B

g
2 = 4 for the

dashed curve; B
g
2 = 8 for the short-dashed curve. In b the solid

curves are obtained within the RC method. For computation of
the broken lines the standard HSA is used. The correspondence
between the curves and theparameterBg2 isB

g
2 = 8 for the curves

1;Bg2 = 4 for the curves 2 andB
g
2 = 2 for the lines 3

ure: as a function of ω it demonstrates firm stability against
variations ofBg2 .
We have analyzed the impact of the various DAs of the

η′-meson on the VF. The quark component of the VF is
stable for different values of Bg2 ∈ [0, 8] (Fig. 6, panel (a)).
In contrast, the gluon component of the VF demonstrates
rapid growth with Bg2 (Fig. 6b). As a result, due to differ-
ent signs of the quark and gluon components of the VF,
the total vertex function Fη′gg∗(Q

2, ω =±1, η) for Bg2 �= 0
runs below the asymptotic one (Fig. 7a). For comparison
the predictions derived in the standard HSA are also shown
(Fig. 7b). The quantitative difference between the corres-
ponding curves is clear.
The dependence of the full VF on the asymmetry par-

ameter ω is depicted in Fig. 8. In the calculations the η′-
meson DAs with various values ofBg2 are employed. As has
been noted above, the gluon component of the VF is iden-
tically equal to zero at ω = 0, and the quark component, as
a function of ω, demonstrates stability against variations of
Bg2 . Therefore, it is easy to understand the features of the
full VF as a function of ω. Really, in the region |ω| < 0.3
the difference between the VFs corresponding to different
Bg2 is small; it becomes essential for |ω| > 0.8. But, owing
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Fig. 6. The quark (a) and gluon (b) components of the
VF as functions of Q2 at ω = ±1. All curves are computed
using the RC method. The correspondence between plot-
ted curves and parameter Bg2 is B

g
2 = 0 for the solid curves;

B
g
2 = 2 for the dot-dot-dashed curves; B

g
2 = 4 for the dashed

lines; Bg2 = 6 for the dot-dashed lines and B
g
2 = 8 for the

short-dashed curves

to the power corrections, mainly to the quark component,
even for |ω|< 0.3 the Borel resummed full VF significantly
exceeds the standard pQCD result.
For phenomenological applications it is useful to pa-

rameterize the VF using some simple expressions.We start
from the expressions of the VF obtained in the framework
of the standard HSA. For the sake of simplicity, let us con-
sider the η′-meson asymptotic DA. In this case, the stan-
dard pQCD prediction for the VF is given by (30). Now, we
want to approximate the RC prediction in the form

F qη′g∗g∗(Q
2, ω, η) =−

8πCαs(Q
2)

3Q2
K2(ω, η)

×2F1(1, 2; 4; r2)

(
a+

b

Q2
+
c

Q4
+ . . .

)
.

(35)

From the general formula (35), for the η′-meson on-shell
gluon transition we get

F q
η′gg∗

(Q2, ω =±1, η) =−
4πCαs(Q

2)

Q2

×
1

1+η

(
a+

b

Q2
+
c

Q4
+ ...

)
.

(36)

Fig. 7. The full VF at ω =±1 computed using the RC method
(a) and the standard HSA (b). The correspondence between
the depicted lines and the parameter Bg2 is the same as in Fig. 6
(the short-dashed lines are not shown)

The fitting procedure gives the following values of the
parameters:

a� 1.7837, b� 0.8228, c�−1.022 .

In the case of the gluons with equal virtualities, we find

F q
η′g∗g∗

(Q2, ω = 0, η) =−
8πCαs(Q

2)

3Q2
K0(η)2F1(1, 2; 4; r0)

×

(
a+

b

Q2
+
c

Q4
+ . . .

)
, (37)

with

a� 1.5485, b� 2.3361, c�−1.627 .

The corresponding results are shown in Fig. 9. As is
seen, (37) leads to an almost perfect approximation of
the original result, whereas the expression (36) describes
the exact prediction, demonstrating, nevertheless, some
deviations.
It is known that the RC method produces higher-twist

ambiguities. For the massless η′-meson gluon transition VF
they were estimated in [22] and found to lie within ±15%
of the original results. Because such modifications cannot
change our principal conclusions, we do not concentrate on
these questions here.
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Fig. 8. The full VF obtained by employing the RC method
(the solid lines) and the standard HSA (the dashed lines) as
a function of ω. For the lines 1 the parameter is Bg2 = 0; for the
lines 2 B

g
2 = 4 , and for the lines 3 B

g
2 = 8

Fig. 9. The approximations to the full VF. For the upper
curves ω = 1, for the lower ones ω = 0. The solid lines are RC
predictions, the dashed ones the corresponding approximations

6 Concluding remarks

In this paper we have evaluated soft end-point (power-
suppressed) corrections to the space-like η′-meson virtual
gluon transition VF by including the η′-meson mass ef-
fects. To this end, we have employed the standard HSA and
RC method in conjunction with the IR renormalon calcu-
lus. In the calculations, both the quark and the gluon com-
ponents of the η′-meson DA have been taken into account.
We have modelled the DAs by retaining in the general ex-
pressions (6) and (7) only the first non-asymptotic terms.
We have extended the results obtained in [22] for the

massless η′-meson virtual gluon transition VF. It has been
shown that effects generated by the η′-meson mass term
considerably change the predictions obtained in [22]: they
suppress the absolute values of the quark and gluon com-
ponents of the VF, and modify their behavior as functions
of the asymmetry parameter ω. This modification, in the
case of the gluon component, has not only a quantitative,
but also a qualitative character: thus, at ω = 0 the gluon
component of the VF vanishes identically. As a result, mass
effects change the dependence of the full VF on the total
gluon virtualityQ2 and asymmetry parameter ω.

The numerical analysis presented shows that power cor-
rections considerably enhance the standard pQCD predic-
tions for the VF in the explored region 1 GeV2 ≤ Q2 ≤
25GeV2, though other sources may also give rise to power
corrections. As an important consistency check, we have
proven that the results obtained within the RC method
in the asymptotic limit Q2→∞ reproduce the standard
pQCD predictions for the vertex function.
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